翻訳と辞書
Words near each other
・ Parijata
・ Parijata yoga
・ Parijatapaharanamu
・ Parijatha
・ Parijatha Vaneswarar Temple
・ Parijatham
・ Parijnanashram
・ Parijnanashram I
・ Parijnanashram II
・ Parijnanashram III
・ Parika
・ Parika Nature Reserve
・ Parikan
・ Parikedun
・ Parikh
Parikh's theorem
・ Parikhan
・ Parikh–Doering oxidation
・ Parikia
・ Parikimys
・ Parikino
・ Parikipandla Narahari
・ Parikkala
・ Parikkalpattu
・ Parikrama
・ Parikrama (band)
・ Parikrama (company)
・ Parikrama (disambiguation)
・ Parikrama education
・ Parikrma Humanity Foundation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Parikh's theorem : ウィキペディア英語版
Parikh's theorem
Parikh's theorem in theoretical computer science says that if one looks only at the relative number of occurrences of terminal symbols in a context-free language, without regard to their order, then the language is indistinguishable from a regular language. It is useful for deciding whether or not a string with a given number of some terminals is accepted by a context-free grammar.〔(【引用サイトリンク】title=Parikh's theorem )〕 It was first proved by Rohit Parikh in 1961 and republished in 1966.
==Definitions and formal statement==
Let \Sigma=\ be an alphabet. The ''Parikh vector'' of a word is defined as the function p:\Sigma^
*\to\mathbb^k, given by〔
p(w)=(|w|_, |w|_, \ldots, |w|_), where |w|_ denotes the number of occurrences of the letter a_i in the word w.
A subset of \mathbb^k is said to be ''linear'' if it is of the form
u_0+\langle u_1,\ldots,u_m\rangle=\ for some vectors u_0,\ldots,u_m.
A subset of \mathbb^k is said to be ''semi-linear'' if it is a union of finitely many linear subsets.
The formal statement of Parikh's theorem is as follows. Let L be a context-free language. Let P(L) be the set of Parikh vectors of words in L, that is, P(L) = \. Then P(L) is a semi-linear set.
If S is any semi-linear set, the language of words whose Parikh vectors are in S is a regular language. Thus, if one considers two languages to be ''commutatively equivalent'' if they have the same set of Parikh vectors, then every context-free language is commutatively equivalent to some regular language.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Parikh's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.